\(\int \cos ^3(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [245]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 241 \[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {a \cos ^2(e+f x) \sin (e+f x) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f}+\frac {2 (a+2 b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {b (a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{3 f \left (a+b-a \sin ^2(e+f x)\right )} \]

[Out]

1/3*a*cos(f*x+e)^2*sin(f*x+e)*(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)/f+2/3*(a+2*b)*EllipticE(sin(f*x+e),(a/
(a+b))^(1/2))*(cos(f*x+e)^2)^(1/2)*(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)/f/(1-a*sin(f*x+e)^2/(a+b))^(1/2)-
1/3*b*(a+b)*EllipticF(sin(f*x+e),(a/(a+b))^(1/2))*(cos(f*x+e)^2)^(1/2)*(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/
2)*(1-a*sin(f*x+e)^2/(a+b))^(1/2)/f/(a+b-a*sin(f*x+e)^2)

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {4233, 1985, 1986, 427, 538, 437, 435, 432, 430} \[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=-\frac {b (a+b) \sqrt {\cos ^2(e+f x)} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{3 f \left (-a \sin ^2(e+f x)+a+b\right )}+\frac {2 (a+2 b) \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )} E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right )}{3 f \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}+\frac {a \sin (e+f x) \cos ^2(e+f x) \sqrt {\sec ^2(e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}}{3 f} \]

[In]

Int[Cos[e + f*x]^3*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(a*Cos[e + f*x]^2*Sin[e + f*x]*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)])/(3*f) + (2*(a + 2*b)*Sqrt[Cos[
e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], a/(a + b)]*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)])/(3*f*S
qrt[1 - (a*Sin[e + f*x]^2)/(a + b)]) - (b*(a + b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], a/(a +
b)]*Sqrt[Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)]*Sqrt[1 - (a*Sin[e + f*x]^2)/(a + b)])/(3*f*(a + b - a*Sin[
e + f*x]^2))

Rule 427

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
 + d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rule 1986

Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Dist[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))], Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)
^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]

Rule 4233

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2), x
], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] &&  !IntegerQ
[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \left (1-x^2\right ) \left (a+\frac {b}{1-x^2}\right )^{3/2} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\text {Subst}\left (\int \left (1-x^2\right ) \left (\frac {a+b-a x^2}{1-x^2}\right )^{3/2} \, dx,x,\sin (e+f x)\right )}{f} \\ & = \frac {\left (\sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}\right ) \text {Subst}\left (\int \frac {\left (a+b-a x^2\right )^{3/2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a+b-a \sin ^2(e+f x)}} \\ & = \frac {a \cos ^2(e+f x) \sin (e+f x) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}\right ) \text {Subst}\left (\int \frac {(a+b) (a-3 (a+b))+2 a (a+2 b) x^2}{\sqrt {1-x^2} \sqrt {a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {a+b-a \sin ^2(e+f x)}} \\ & = \frac {a \cos ^2(e+f x) \sin (e+f x) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f}-\frac {\left (b (a+b) \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b-a x^2}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {a+b-a \sin ^2(e+f x)}}+\frac {\left (2 (a+2 b) \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}\right ) \text {Subst}\left (\int \frac {\sqrt {a+b-a x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {a+b-a \sin ^2(e+f x)}} \\ & = \frac {a \cos ^2(e+f x) \sin (e+f x) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f}+\frac {\left (2 (a+2 b) \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}\right ) \text {Subst}\left (\int \frac {\sqrt {1-\frac {a x^2}{a+b}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {\left (b (a+b) \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1-\frac {a x^2}{a+b}}} \, dx,x,\sin (e+f x)\right )}{3 f \left (a+b-a \sin ^2(e+f x)\right )} \\ & = \frac {a \cos ^2(e+f x) \sin (e+f x) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f}+\frac {2 (a+2 b) \sqrt {\cos ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}{3 f \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}-\frac {b (a+b) \sqrt {\cos ^2(e+f x)} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right ) \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{3 f \left (a+b-a \sin ^2(e+f x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.74 (sec) , antiderivative size = 179, normalized size of antiderivative = 0.74 \[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {\cos (e+f x) \sqrt {a+b \sec ^2(e+f x)} \left (4 \sqrt {2} \left (a^2+3 a b+2 b^2\right ) \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}} E\left (e+f x\left |\frac {a}{a+b}\right .\right )-2 \sqrt {2} b (a+b) \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}} \operatorname {EllipticF}\left (e+f x,\frac {a}{a+b}\right )+a (a+2 b+a \cos (2 (e+f x))) \sin (2 (e+f x))\right )}{6 f (a+2 b+a \cos (2 (e+f x)))} \]

[In]

Integrate[Cos[e + f*x]^3*(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(Cos[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2]*(4*Sqrt[2]*(a^2 + 3*a*b + 2*b^2)*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/
(a + b)]*EllipticE[e + f*x, a/(a + b)] - 2*Sqrt[2]*b*(a + b)*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a + b)]*Elli
pticF[e + f*x, a/(a + b)] + a*(a + 2*b + a*Cos[2*(e + f*x)])*Sin[2*(e + f*x)]))/(6*f*(a + 2*b + a*Cos[2*(e + f
*x)]))

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.14 (sec) , antiderivative size = 6947, normalized size of antiderivative = 28.83

method result size
default \(\text {Expression too large to display}\) \(6947\)

[In]

int(cos(f*x+e)^3*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

Fricas [F]

\[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{3} \,d x } \]

[In]

integrate(cos(f*x+e)^3*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral((b*cos(f*x + e)^3*sec(f*x + e)^2 + a*cos(f*x + e)^3)*sqrt(b*sec(f*x + e)^2 + a), x)

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**3*(a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{3} \,d x } \]

[In]

integrate(cos(f*x+e)^3*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cos(f*x + e)^3, x)

Giac [F]

\[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{3} \,d x } \]

[In]

integrate(cos(f*x+e)^3*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cos(f*x + e)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int {\cos \left (e+f\,x\right )}^3\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \]

[In]

int(cos(e + f*x)^3*(a + b/cos(e + f*x)^2)^(3/2),x)

[Out]

int(cos(e + f*x)^3*(a + b/cos(e + f*x)^2)^(3/2), x)